2.1 Line integral of the electric field

field implies that its curl is zero. See Appendix F for a discussion
of the various vector operators in different coordinate systems.

2.1 Line integral of the electric field

Suppose that E is the field of some stationary distribution of electric
charges. Let P and P; denote two points anywhere in the field. The line
integral of E between the two points is |, Ifl > E - ds, taken along some path
that runs from P; to P, as shown in Fig. 2.1. This means: divide the
chosen path into short segments, each segment being represented by a
vector connecting its ends; take the scalar product of the path-segment
vector with the field E at that place; add these products up for the whole
path. The integral as usual is to be regarded as the limit of this sum as
the segments are made shorter and more numerous without limit.

Let’s consider the field of a point charge ¢ and some paths running
from point Pj to point P> in that field. Two different paths are shown in
Fig. 2.2. It is easy to compute the line integral of E along path A, which
is made up of a radial segment running outward from P; and an arc of

path B
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Showing the division of the path into path
elements ds.

Figure 2.2.

The electric field E is that of a positive point
charge ¢. The line integral of E from P; to P,
along path A has the value (g/4meg)(1/r1 — 1/r).
It will have exactly the same value if calculated
for path B, or for any other path from Py to P,.
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radius 7. Along the radial segment of path A, E and ds are parallel, the
magnitude of E is g/4meqr?, and E - ds is simply (g/4mweqr?) ds. Thus
the line integral on that segment is

2 qdr q 1 1
5= —— ). 2.1)
i 47‘[601’ 47‘[60 Il rn

The second leg of path A, the circular segment, gives zero because E is
perpendicular to ds everywhere on that arc. The entire line integral is

therefore
Py g (1 1
E-ds= ———). (2.2)
Py dweg \r1 1

Now look at path B. Because E is radial with magnitude g/4meqr?,
E-ds = (q/4meor?) dr even when ds is not radially oriented. The corres-
ponding pieces of path A and path B indicated in the diagram make iden-
tical contributions to the integral. The part of path B that loops beyond
ro makes a net contribution of zero; contributions from corresponding
outgoing and incoming parts cancel. For the entire line integral, path B
will give the same result as path A. As there is nothing special about path
B, Eq. (2.1) must hold for any path running from P; to P.

Here we have essentially repeated, in different language, the argu-
ment in Section 1.5, illustrated in Fig. 1.5, concerning the work done in
moving one point charge near another. But now we are interested in the
total electric field produced by any distribution of charges. One more
step will bring us to an important conclusion. The line integral of the
sum of fields equals the sum of the line integrals of the fields calculated
separately. Or, stated more carefully, if E = E| + E, + - - -, then

P, P, P,
f E-ds=f El-ds—i—/ Er-ds+--, 2.3)
P P P

1 1 1

where the same path is used for all the integrations. Now any electro-
static field can be regarded as the sum of a number (possibly enormous)
of point-charge fields, as expressed in Eq. (1.20) or Eq. (1.22). There-
fore if the line integral from P; to P, is independent of path for each
of the point-charge fields E{,E,, ..., the total field E must have this

property:

The line integral |, 151 >E - ds for any given electrostatic field E has
the same value for all paths from P; to P».
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The points P, and Py may coincide. In that case the paths are all
closed curves, among them paths of vanishing length. This leads to the
following corollary:

The line integral [ E - ds around any closed path in an electrostatic
field is zero.

By electrostatic field we mean, strictly speaking, the electric field of
stationary charges. Later on, we shall encounter electric fields in which
the line integral is not path-independent. Those fields will usually be
associated with rapidly moving charges. For our present purposes we
can say that, if the source charges are moving slowly enough, the field
E will be such that [ E - ds is practically path-independent. Of course,
if E itself is varying in time, the E in [ E - ds must be understood as
the field that exists over the whole path at a given instant of time. With
that understanding we can talk meaningfully about the line integral in a
changing electrostatic field.

2.2 Potential difference and the potential function
Because the line integral in the electrostatic field is path-independent,
we can use it to define a scalar quantity ¢, without specifying any par-
ticular path:

Py
o = —/ E - ds. 2.4)
P

1

With the minus sign included here, ¢»; is the work per unit charge done
by an external agency in moving a positive charge from Pp to P; in the
field E. (The external agency must supply a force Fex; = —¢E to balance
the electrical force Felee = ¢E; hence the minus sign.) Thus ¢, is a
single-valued scalar function of the two positions P; and P>. We call it
the electric potential difference between the two points.

In our SI system of units, potential difference is measured in joule/
coulomb. This unit has a name of its own, the volt:

joule

Ivolt = 1 (2.5)

coulomb’

One joule of work is required to move a charge of one coulomb through a
potential difference of one volt. In the Gaussian system of units, potential
difference is measured in erg/esu. This unit also has a name of its own,
the statvolt (“stat” comes from “electrostatic”). As an exercise, you can
use the 1 C~3-10° esu relation from Section 1.4 to show that one volt
is equivalent to approximately 1/300 statvolt. These two relations are
accurate to better than 0.1 percent, thanks to the accident that c is that
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Figure 2.3.
A particular path, ABC, in the electric field
Ey = Ky, Ey = Kx. Some field lines are shown.

close to 3- 108 m/s. Appendix C derives the conversion factors between
all of the corresponding units in the SI and Gaussian systems. Further
discussion of the exact relations between SI and Gaussian electrical units
is given in Appendix E, which takes into account the definition of the
meter in terms of the speed of light.

Suppose we hold P; fixed at some reference position. Then ¢y
becomes a function of P, only, that is, a function of the spatial coord-
inates x, y, z. We can write it simply ¢ (x,y, z), without the subscript,
if we remember that its definition still involves agreement on a refer-
ence point Pi. We can say that ¢ is the potential associated with the
vector field E. It is a scalar function of position, or a scalar field (they
mean the same thing). Its value at a point is simply a number (in units of
work per unit charge) and has no direction associated with it. Once the
vector field E is given, the potential function ¢ is determined, except
for an arbitrary additive constant allowed by the arbitrariness in our
choice of Pj.

Example Find the potential associated with the electric field described in
Fig. 2.3, the components of which are Ex = Ky, Ey = Kx, E; = 0, with K a
constant. This is a possible electrostatic field; we will see why in Section 2.17.
Some field lines are shown.

Solution Since E; = 0, the potential will be independent of z and we need
consider only the xy plane. Let x1, y; be the coordinates of Py, and x, y, the
coordinates of Py. It is convenient to locate Py at the origin: x; = 0, y; = 0.
To evaluate — [ E - ds from this reference point to a general point (x,yp) it is
easiest to use a path like the dashed path ABC in Fig. 2.3:

(x2,y2) (2,0) (%2,y2)
b (x2,y2) = —/ E.-ds= —/ Exdx—/ Eydy. (2.6)
(0,0) (0,0) (x2,0)

The first of the two integrals on the right is zero because Ey is zero along the x
axis. The second integration is carried out at constant x, with Ey = Kxp:

(x2.y2) )

—/ Eydy = 7-/‘ Kxy dy = —Kxpy». 2.7)
(x2,0) 0

There was nothing special about the point (x, y>) so we can drop the subscripts:

¢ (x,y) = —Kxy 2.8)

for any point (x,y) in this field, with zero potential at the origin. Any constant
could be added to this. That would only mean that the reference point to which
zero potential is assigned had been located somewhere else.

Example (Potential due to a uniform sphere) A sphere has radius R and
uniform volume charge density p. Use the results from the example in Section 1.11
to find the potential for all values of r, both inside and outside the sphere. Take
the reference point P; to be infinitely far away.
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Solution  From the example in Section 1.11, the magnitude of the (radial) elec-
tric field inside the sphere is E(r) = pr/3¢€p, and the magnitude outside is
E(r) = pR3/ 3eor2. Equation (2.4) tells us that the potential equals the negative
of the line integral of the field, from P; (which we are taking to be at infinity)
down to a given radius r. The potential outside the sphere is therefore

r r R3 R3
$out(r) = —/ E()dr = —/ PZ == (2.9)
00 00 3egr’? 3egr

In terms of the total charge in the sphere, Q = (47 R3/3)p, this potential is sim-
ply ¢out(r) = Q/4megr. This is as expected, because we already knew that the
potential energy of a charge ¢ due to the sphere is gQ/4mepr. And the potential
¢ equals the potential energy per unit charge.

To find the potential inside the sphere, we must break the integral into two
pieces:

R r R ,R3 roo./
o= [ Brar — ["eerar =~ [P [T
oo R 00 360}”/2 R 36()

3 2 2
_ PR P2 gy PRT P (2.10)

3egR  6¢ ) 6¢g
Note that Egs. (2.9) and (2.10) yield the same value of ¢ at the surface of the
sphere, namely ¢ (R) = oR? /3€p. So ¢ is continuous across the surface, as it
should be. (The field is everywhere finite, so the line integral over an infinitesimal
interval must yield an infinitesimal result.) The slope of ¢ is also continuous,
because E(r) (which is the negative derivative of ¢, because ¢ is the negative

integral of E) is continuous. A plot of ¢ (r) is shown in Fig. 2.4.

The potential at the center of the sphere is ¢ (0) = ,oR2 /2€q, which is 3/2
times the value at the surface. So if you bring a charge in from infinity, it takes
2/3 of your work to reach the surface, and then 1/3 to go the extra distance of R
to the center.

We must be careful not to confuse the potential ¢ associated with a
given field E with the potential energy of a system of charges. The poten-
tial energy of a system of charges is the total work required to assemble
it, starting with all the charges far apart. In Eq. (1.14), for example, we
expressed U, the potential energy of the charge system in Fig. 1.6. The
electric potential ¢ (x,y,z) associated with the field in Fig. 1.6 would
be the work per unit charge required to move a unit positive test charge
from some chosen reference point to the point (x, y, z) in the field of that
structure of nine charges.

2.3 Gradient of a scalar function

Given the electric field, we can find the electric potential function. But
we can also proceed in the other direction; from the potential we can
derive the field. It appears from Eq. (2.4) that the field is in some sense
the derivative of the potential function. To make this idea precise we
introduce the gradient of a scalar function of position. Let f(x,y, z) be
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Figure 2.4.

The potential due to a uniform sphere of charge.
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The scalar function f(x, y) is represented by the
surface in (a). The arrows in (b) represent the

vector function, grad 1.

some continuous, differentiable function of the coordinates. With its par-
tial derivatives df/dx, df /dy, and df /0z we can construct at every point
in space a vector, the vector whose x, y, z components are equal to the
respective partial derivatives.' This vector we call the gradient of f, writ-
ten “grad f,” or Vf:

szfg% +y% +2%. (2.13)

0x ay 0z

Vf is a vector that tells how the function f varies in the neighborhood
of a point. Its x component is the partial derivative of f with respect to
x, a measure of the rate of change of f as we move in the x direction.
The direction of the vector Vf at any point is the direction in which one
must move from that point to find the most rapid increase in the function
f- Suppose we were dealing with a function of two variables only, x and
v, so that the function could be represented by a surface in three dimen-
sions. Standing on that surface at some point, we see the surface rising
in some direction, sloping downward in the opposite direction. There is a
direction in which a short step will take us higher than a step of the same
length in any other direction. The gradient of the function is a vector in
that direction of steepest ascent, and its magnitude is the slope measured
in that direction.

Figure 2.5 may help you to visualize this. Suppose some particular
function of two coordinates x and y is represented by the surface f(x, y)
sketched in Fig. 2.5(a). At the location (x,y;) the surface rises most
steeply in a direction that makes an angle of about 80° with the positive
x direction. The gradient of f(x,y), Vf, is a vector function of x and y.
Its character is suggested in Fig. 2.5(b) by a number of vectors at various
points in the two-dimensional space, including the point (x1,y;). The
vector function Vf defined in Eq. (2.13) is simply an extension of this
idea to three-dimensional space. (Be careful not to confuse Fig. 2.5(a)
with real three-dimensional xyz space; the third coordinate there is the
value of the function f(x,y).)

As one example of a function in three-dimensional space, suppose f
is a function of r only, where r is the distance from some fixed point O.
On a sphere of radius ry centered about O, f = f(rg) is constant. On a
slightly larger sphere of radius ro 4 dr it is also constant, with the value
f = f(ro + dr). If we want to make the change from f(rg) to f(ry + dr),

' We remind the reader that a partial derivative with respect to x, of a function of x, y, z,
written simply df/dx, means the rate of change of the function with respect to x with
the other variables y and z held constant. More precisely,

o _ iy SOt A%y D) —fny.2)
dx Ax—0 Ax ’

(2.11)

As an example, if f = x2yz3,

a of a
—f = 2xyz3, —j = x2z3, —f = 3x2y12. (2.12)
ax ay 0z
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the shortest step we can make is to go radially (as from A to B) rather
than from A to C, in Fig. 2.6. The “slope” of f is thus greatest in the
radial direction, so Vf at any point is a radially pointing vector. In fact
Vf = t(df /dr) in this case, T denoting, for any point, a unit vector in the
radial direction. See Section F.2 in Appendix F for further discussion of
the gradient.

2.4 Derivation of the field from the potential
It is now easy to see that the relation of the scalar function f to the vector
function Vf is the same, except for a minus sign, as the relation of the
potential ¢ to the field E. Consider the value of ¢ at two nearby points,
(x,v,2) and (x 4+ dx, y + dy, z + dz). The change in ¢, going from the first
point to the second, is, in first-order approximation,

do = %d +—¢dy+—¢d (2.14)

ady 0z

On the other hand, from the definition of ¢ in Eq. (2.4), the change can
also be expressed as

d¢ = —E - ds. 2.15)

The infinitesimal vector displacement ds is just X dx + y dy + Z dz. Thus
if we identify E with —V¢, where V¢ is defined via Eq. (2.13), then
Eqgs. (2.14) and (2.15) become identical. So the electric field is the nega-
tive of the gradient of the potential:

E=-V¢ (2.16)

The minus sign came in because the electric field points from a region of
greater potential toward a region of lesser potential, whereas the vector
V¢ is defined so that it points in the direction of increasing ¢.

To show how this works, we go back to the example of the field
in Fig. 2.3. From the potential given by Eq. (2.8), ¢ = —Kxy, we can
recover the electric field we started with:

3
E = —V(—Kxy) = (xai + y—) (—Kxy) = K&y + §%).  (2.17)

2.5 Potential of a charge distribution

We already know the potential that goes with a single point charge,
because we calculated the work required to bring one charge into the
neighborhood of another in Eq. (1.9). The potential at any point, in the
field of an isolated point charge ¢, is just ¢/4meor, where r is the distance

Figure 2.6.
The shortest step for a given change in f is the
radial step AB, if f is a function of r only.
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z from the point in question to the source ¢, and where we have assigned
“Field” point ;016 potential to points infinitely far from the source.

&2 Superposition must work for potentials as well as fields. If we have
several sources, the potential function is simply the sum of the poten-
tial functions that we would have for each of the sources present alone —
providing we make a consistent assignment of the zero of potential in
each case. If all the sources are contained in some finite region, it is
always possible, and usually the simplest choice, to put zero potential at
infinite distance. If we adopt this rule, the potential of any charge distri-
bution can be specified by the integral

dx', dy', dz’

Charge

distribution

X, y.7)dx dy d7
b(x.y.2) :/ ple.y.2)ddy dz 2.18)
all dmegr
sources

where r is the distance from the volume element dx’ dy’ dz’' to the point
(x,y,z) at which the potential is being evaluated (Fig. 2.7). That is, r =
[(x — X)? 4+ (v — ¥)? + (z — 2)?]'/2. Notice the difference between
this and the integral giving the electric field of a charge distribution; see
Eq. (1.22). Here we have r in the denominator, not 2, and the integral

Figure 2.7. is a scalar not a vector. From the scalar potential function ¢ (x,y,z) we
Each element of the charge distribution can always find the electric field by taking the negative gradient of ¢,
o(x',y,7) contributes to the potential ¢ at the according to Eq. (2.16).

point (x, y.2). The potential at this point is the In the case of a discrete distribution of source charges, the above

sum of all such contributions; see Eq. (2.18). integral is replaced by a sum over all the charges, indexed by i:

qi
, Y, 2) = —_—, 2.19
¢(x,y,2) E Ineor (2.19)

all sources

where r is the distance from the charge g; to the point (x, y, 7).

Example (Potential of two point charges) Consider a very simple exam-
ple, the potential of the two point charges shown in Fig. 2.8. A positive charge of
12 uC is located 3 m away from a negative charge, —6 pnC. (The “p” prefix stands
for “micro,” or 1079.) The potential at any point in space is the sum of the poten-
tials due to each charge alone. The potentials for some selected points in space
are given in the diagram. No vector addition is involved here, only the algebraic
addition of scalar quantities. For instance, at the point on the far right, which is
6 m from the positive charge and 5 m from the negative charge, the potential has
the value

1 (12.10—6c —6-10_6C>_0.8~10_6C/m

4re 6m Sm 4e

=72-1031/C=72-10°V, (2.20)

where we have used 1/4mep=~9- 10° Nmz/C2 (and also 1Nm=11J). The
potential approaches zero at infinite distance. It would take 7.2 - 103 J of work
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to bring a unit positive charge in from infinity to a point where ¢ = 7.2 - 103 V.
Note that two of the points shown on the diagram have ¢ = 0. The net work
done in bringing in any charge to one of these points would be zero. You can see
that there must be an infinite number of such points, forming a surface in space
surrounding the negative charge. In fact, the locus of points with any particular
value of ¢ is a surface — an equipotential surface — which would show on our
two-dimensional diagram as a curve.

There is one restriction on the use of Eq. (2.18): it may not work
unless all sources are confined to some finite region of space. A simple
example of the difficulty that arises with charges distributed out to infi-
nite distance is found in the long charged wire whose field E we studied
in Section 1.12. If we attempt to carry out the integration over the charge
distribution indicated in Eq. (2.18), we find that the integral diverges —
we get an infinite result. No such difficulty arose in finding the electric
field of the infinitely long wire, because the contributions of elements of
the line charge to the field decrease so rapidly with distance. Evidently
we had better locate the zero of potential somewhere close to home, in
a system that has charges distributed out to infinity. Then it is simply
a matter of calculating the difference in potential ¢, between the gen-
eral point (x, y, z) and the selected reference point, using the fundamental
relation, Eq. (2.4).

Example (Potential of a long charged wire) To see how this goes in the
case of the infinitely long charged wire, let us arbitrarily locate the reference
point P at a distance r; from the wire. Then to carry a charge from P to

Figure 2.8.

The electric potential ¢ at various points in a
system of two point charges. ¢ goes to zero at
infinite distance and is given in units of volts, or
joules per coulomb.
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any other point P, at distance rp requires the work per unit charge, using

Eq. (1.39):
Py r A
¢>21=—/ E-ds=—/ <2 )dr
Py n \2megr

A
Inry. 2.21)
TEQ

* 1 +
=— nr
2 e 2

This shows that the electric potential for the charged wire can be taken as

A
¢ =— In r + constant. (2.22)
2 e
The constant, (A/2m€q) In rq in this case, has no effect when we take —grad ¢ to
get back to the field E. In this case,
.dp AR

E=-V¢p=-r1r—= .
dr  2megr

(2.23)

2.6 Uniformly charged disk
Let us now study the electric potential and field around a uniformly
charged disk. This is a charge distribution like that discussed in
Section 1.13, except that it has a limited extent. The flat disk of radius
a in Fig. 2.9 carries a positive charge spread over its surface with the
constant density o, in C/m?. (This is a single sheet of charge of infinites-
imal thickness, not two layers of charge, one on each side. That is, the
total charge in the system is wa’c.) We shall often meet surface charge
distributions in the future, especially on metallic conductors. However,
the object just described is not a conductor; if it were, as we shall soon
see, the charge could not remain uniformly distributed but would redis-
k4 tribute itself, crowding more toward the rim of the disk. What we have
is an insulating disk, like a sheet of plastic, upon which charge has been
“sprayed” so that every square meter of the disk has received, and holds
fixed, the same amount of charge.

Example (Potential on the axis) Let us find the potential due to our uni-
formly charged disk, at some point P on the axis of symmetry, which we have
made the y axis. All charge elements in a thin, ring-shaped segment of the disk
lie at the same distance from Pj. If s denotes the radius of such an annular seg-
ment and ds is its width, its area is 2775 ds. The amount of charge it contains, dg,
is therefore dg = o 27 s ds. Since all parts of this ring are the same distance away
from Py, namely, r = /y2 + s2, the contribution of the ring to the potential at
Py isdq/4megr = osds / (260\/ y2 + 32). To get the potential due to the whole

0,y,0)

Y disk, we have to integrate over all such rings:
Figure 2.9. d a d a
Finding the potential at a point P; on the axis of ¢(0,y,0) = / 2 7 _ / Oszs > = 21 y2 4 52 (2.24)
a uniformly charged disk. Teor  Jo 2epvy +s €0 0
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Putting in the limits, we obtain

¢(0,y,0) = 2160 (m - y) fory > 0. (2.25)

A minor point deserves a comment. The result we have written down in
Eq. (2.25) holds for all points on the positive y axis. It is obvious from the phys-
ical symmetry of the system (there is no difference between one face of the disk
and the other) that the potential must have the same value for negative and pos-
itive y, and this is reflected in Eq. (2.24), where only y2 appears. But in writing
Eq. (2.25) we made a choice of sign in taking the square root of y2, with the
consequence that it holds only for positive y. The correct expression for y < 0 is
obtained by the other choice of root and is given by

$(0,y,0) = 2‘%0 <\/y2 Ty —|—y> for y < 0. (2.26)

In view of this, we should not be surprised to find a kink in the plot of ¢ (0, y, 0)
at y = 0. Indeed, the function has an abrupt change of slope there, as we see in
Fig. 2.10, where we have plotted as a function of y the potential on the axis. The
potential at the center of the disk is

oa

¢(0’O’ 0) = %

(2.27)
This much work would be required to bring a unit positive charge in from infinity,
by any route, and leave it sitting at the center of the disk.

The behavior of ¢ (0, y,0) for very large y is interesting. For y > a we can
approximate Eq. (2.25) as follows:

1/2
5 2 _ 1 a? / = 1 1 {d? | Naz
Yy +ac—y=y +)ﬁ — =y +§ )72 + = ~ o

Figure 2.10.
A graph of the potential on the axis. The dashed
curve is the potential of a point charge

q=ndo.
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Figure 2.11.
Finding the potential at a point P, on the rim of a
uniformly charged disk.

Hence

a2(7

$0,y,0) ~ — fory > a. (2.29)
4degy

Now ma2o is the total charge ¢ on the disk, and Eq. (2.29), which can be written
as na20/4n60y, is just the expression for the potential due to a point charge of
this magnitude. As we should expect, at a considerable distance from the disk
(relative to its diameter), it doesn’t matter much how the charge is shaped; only
the total charge matters, in first approximation. In Fig. 2.10 we have drawn, as a
dashed curve, the function a%c /4€0y. You can see that the axial potential func-
tion approaches its asymptotic form pretty quickly.

It is not quite so easy to derive the potential for general points away
from the axis of symmetry, because the definite integral isn’t so simple.
It proves to be something called an elliptic integral. These functions are
well known and tabulated, but there is no point in pursuing here mathe-
matical details peculiar to a special problem. However, one further cal-
culation, which is easy enough, may be instructive.

Example (Potential on the rim) We can find the potential at a point on the

very edge of the disk, such as P, in Fig. 2.11. To calculate the potential at Py we

can consider first the thin wedge of length R and angular width d6, as shown.

An element of the wedge, the black patch at distance r from P, contains an

amount of charge dg = ord6 dr. Its contribution to the potential at Py is there-

fore dq/4megr = o dO dr/4mey. The contribution of the entire wedge is then
R

(0 dB/4mep) / dr = (0R/4meq) df. Now R is 2a cos 6, from the geometry of
0

the right triangle, and the whole disk is swept out as 6 ranges from — /2 to 7w /2.
Thus we find the potential at P:

oa m/2 oa
= cosfdfd = —. (2.30)
2rey Jn)2 TEQ

Comparing this with the potential at the center of the disk, oa/2¢(, we see
that, as we should expect, the potential falls off from the center to the edge of the
disk. The electric field, therefore, must have an outward component in the plane
of the disk. That is why we remarked earlier that the charge, if free to move,
would redistribute itself toward the rim. To put it another way, our uniformly
charged disk is not a surface of constant potential, which any conducting surface
must be unless charge is moving.2

2 The fact that conducting surfaces have to be equipotentials will be discussed
thoroughly in Chapter 3.
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Let us now examine the electric field due to the disk. For y > 0, the
field on the symmetry axis can be computed directly from the potential
function given in Eq. (2.25):

hlo} d o
E,=——F = —— — 2442 —
"= Ty T dy 240 (” Ta y)

o Yy
=— |1l - — > 0. (2.31)
2¢€0 |: /y2 +a2j| y

To be sure, it is not hard to compute E), directly from the charge distri-
bution, for points on the axis. We can again slice the disk into concentric
rings, as we did prior to Eq. (2.24). But we must remember that E is
a vector and that only the y component survives in the present setup,
whereas we did not need to worry about components when calculating
the scalar function ¢ above.

As y approaches zero from the positive side, E, approaches o /2.
On the negative y side of the disk, which we shall call the back, E points
in the other direction and its y component E, is —o/2¢q. This is the
same as the field of an infinite sheet of charge of density o, derived in
Section 1.13. It ought to be, for at points close to the center of the disk,
the presence or absence of charge out beyond the rim can’t make much
difference. In other words, any sheet looks infinite if viewed from close
up. Indeed, Ey has the value o/2¢p not only at the center, but also all
over the disk.

For large y, we can find an approximate expression for £y by using
a Taylor series approximation as we did in Eq. (2.28). You can show that
E, approaches a*o /4€py?, which can be written as wa’o /4megy?. This
is correctly the field due to a point charge with magnitude wa’o.

In Fig. 2.12 we show some field lines for this system and also, plotted
as dashed curves, the intersections on the yz plane of the surfaces of
constant potential. Near the center of the disk these are lens-like surfaces,
while at distances much greater than a they approach the spherical form
of equipotential surfaces around a point charge.

Figure 2.12 illustrates a general property of field lines and equipoten-
tial surfaces. A field line through any point and the equipotential surface
through that point are perpendicular to one another, just as, on a con-
tour map of hilly terrain, the slope is steepest at right angles to a contour
of constant elevation. This must be so, because if the field at any point
had a component parallel to the equipotential surface through that point,
it would require work to move a test charge along a constant-potential
surface.

The energy associated with this electric field could be expressed as
the integral over all space of (¢9/2)E? dv. It is equal to the work done in
assembling this distribution, starting with infinitesimal charges far apart.
In this particular example, as Exercise 2.56 will demonstrate, that work
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The electric potential

Figure 2.12.

The electric field of the uniformly charged disk.
Solid curves are field lines. Dashed curves are
intersections, with the plane of the figure, of
surfaces of constant potential.

is not hard to calculate directly if we know the potential at the rim of a
uniformly charged disk.

There is a general relation between the work U required to assem-
ble a charge distribution p(x,y,z) and the potential ¢ (x,y,z) of that
distribution:

U= % / oo dv (2.32)

Equation (1.15), which gives the energy of a system of discrete point
charges, could have been written in this way:

N
1 L gk
== i —. 2.
v 2 qu Z dmeq rik (2.33)
=1 k#

The second sum is the potential at the location of the jth charge, due to all
the other charges. To adapt this to a continuous distribution we merely




2.7 Dipoles

73

replace g; with p dv and the sum over j by an integral, thus obtaining
Eq. (2.32).

2.7 Dipoles

Consider a setup with two equal and opposite charges +¢g located at
positions +€/2 on the y axis, as shown in Fig. 2.13. This configura-
tion is called a dipole. The purpose of this section is to introduce the
basics of dipoles. We save further discussion for Chapter 10, where we
define the word “dipole” more precisely, derive things in more general-
ity, and discuss examples of dipoles in actual matter. For now we just
concentrate on determining the electric field and potential of a dipole.
We have all of the necessary machinery at our disposal, so let’s see what
we can find.

We will restrict the treatment to points far away from the dipole
(that is, points with r >> £). Although it is easy enough to write down an
exact expression for the potential ¢ (and hence the field E = —V¢) at
any position, the result isn’t very enlightening. But when we work in the
approximation of large distances, we obtain a result that, although isn’t
exactly correct, is in fact quite enlightening. That’s how approximations
work — you trade a little bit of precision for a large amount of clarity.

Our strategy will be to find the potential ¢ in polar (actually spheri-
cal) coordinates, and then take the gradient to find the electric field E. We
then determine the shape of the field-line and constant-potential curves.
To make things look a little cleaner in the calculations below, we write
1/4mep as k in some intermediate steps.

2.71 Calculation of ¢ and E
First note that, since the dipole setup is rotationally symmetric around
the line containing the two charges, it suffices to find the potential in an
arbitrary plane containing this line. We will use spherical coordinates,
which reduce to polar coordinates in a plane because the angle ¢ doesn’t
come into play (but note that 6 is measured down from the vertical axis).
Consider a point P with coordinates (r,0), as shown in Fig. 2.14. Let
r1 and rp be the distances from P to the two charges. Then the exact
expression for the potential at P is (with k = 1/4m€p)
op = k_ k—q

r rn

(2.34)

If desired, the law of cosines can be used to write r; and r; in terms of r,
0, and £.

Let us now derive an approximate form of this result, valid in the
r >> £ limit. One way to do this is to use the law-of-cosines expressions
for r1 and rp; this is the route we will take in Chapter 10. But for the
present purposes a simpler method suffices. In the r > ¢ limit, a closeup
view of the dipole is shown in Fig. 2.15. The two lines from the charges
to P are essentially parallel, so we see from the figure that the lengths of
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Figure 2.13.

Two equal and opposite charges form a dipole.
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Figure 2.14.
Finding the potential ¢ at point P.
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Figure 2.15.
Closeup view of Fig. 2.14.
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