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field implies that its curl is zero. See Appendix F for a discussion
of the various vector operators in different coordinate systems.
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Figure 2.1.
Showing the division of the path into path
elements ds.

2.1 Line integral of the electric field
Suppose that E is the field of some stationary distribution of electric
charges. Let P1 and P2 denote two points anywhere in the field. The line
integral of E between the two points is

∫ P2
P1

E · ds, taken along some path
that runs from P1 to P2, as shown in Fig. 2.1. This means: divide the
chosen path into short segments, each segment being represented by a
vector connecting its ends; take the scalar product of the path-segment
vector with the field E at that place; add these products up for the whole
path. The integral as usual is to be regarded as the limit of this sum as
the segments are made shorter and more numerous without limit.

Let’s consider the field of a point charge q and some paths running
from point P1 to point P2 in that field. Two different paths are shown in
Fig. 2.2. It is easy to compute the line integral of E along path A, which
is made up of a radial segment running outward from P1 and an arc of
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Figure 2.2.
The electric field E is that of a positive point
charge q. The line integral of E from P1 to P2
along path A has the value (q/4πε0)(1/r1 − 1/r2).
It will have exactly the same value if calculated
for path B, or for any other path from P1 to P2.
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radius r2. Along the radial segment of path A, E and ds are parallel, the
magnitude of E is q/4πε0r2, and E · ds is simply (q/4πε0r2) ds. Thus
the line integral on that segment is

∫ r2

r1

q dr
4πε0r2 = q

4πε0

(
1
r1

− 1
r2

)
. (2.1)

The second leg of path A, the circular segment, gives zero because E is
perpendicular to ds everywhere on that arc. The entire line integral is
therefore

∫ P2

P1

E · ds = q
4πε0

(
1
r1

− 1
r2

)
. (2.2)

Now look at path B. Because E is radial with magnitude q/4πε0r2,
E ·ds = (q/4πε0r2) dr even when ds is not radially oriented. The corres-
ponding pieces of path A and path B indicated in the diagram make iden-
tical contributions to the integral. The part of path B that loops beyond
r2 makes a net contribution of zero; contributions from corresponding
outgoing and incoming parts cancel. For the entire line integral, path B
will give the same result as path A. As there is nothing special about path
B, Eq. (2.1) must hold for any path running from P1 to P2.

Here we have essentially repeated, in different language, the argu-
ment in Section 1.5, illustrated in Fig. 1.5, concerning the work done in
moving one point charge near another. But now we are interested in the
total electric field produced by any distribution of charges. One more
step will bring us to an important conclusion. The line integral of the
sum of fields equals the sum of the line integrals of the fields calculated
separately. Or, stated more carefully, if E = E1 + E2 + · · · , then

∫ P2

P1

E · ds =
∫ P2

P1

E1 · ds +
∫ P2

P1

E2 · ds + · · · , (2.3)

where the same path is used for all the integrations. Now any electro-
static field can be regarded as the sum of a number (possibly enormous)
of point-charge fields, as expressed in Eq. (1.20) or Eq. (1.22). There-
fore if the line integral from P1 to P2 is independent of path for each
of the point-charge fields E1, E2, . . . , the total field E must have this
property:

The line integral
∫ P2

P1
E · ds for any given electrostatic field E has

the same value for all paths from P1 to P2.
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The points P2 and P1 may coincide. In that case the paths are all
closed curves, among them paths of vanishing length. This leads to the
following corollary:

The line integral
∫

E · ds around any closed path in an electrostatic
field is zero.

By electrostatic field we mean, strictly speaking, the electric field of
stationary charges. Later on, we shall encounter electric fields in which
the line integral is not path-independent. Those fields will usually be
associated with rapidly moving charges. For our present purposes we
can say that, if the source charges are moving slowly enough, the field
E will be such that

∫
E · ds is practically path-independent. Of course,

if E itself is varying in time, the E in
∫

E · ds must be understood as
the field that exists over the whole path at a given instant of time. With
that understanding we can talk meaningfully about the line integral in a
changing electrostatic field.

2.2 Potential difference and the potential function
Because the line integral in the electrostatic field is path-independent,
we can use it to define a scalar quantity φ21, without specifying any par-
ticular path:

φ21 = −
∫ P2

P1

E · ds. (2.4)

With the minus sign included here, φ21 is the work per unit charge done
by an external agency in moving a positive charge from P1 to P2 in the
field E. (The external agency must supply a force Fext = −qE to balance
the electrical force Felec = qE; hence the minus sign.) Thus φ21 is a
single-valued scalar function of the two positions P1 and P2. We call it
the electric potential difference between the two points.

In our SI system of units, potential difference is measured in joule/
coulomb. This unit has a name of its own, the volt:

1 volt = 1
joule

coulomb
. (2.5)

One joule of work is required to move a charge of one coulomb through a
potential difference of one volt. In the Gaussian system of units, potential
difference is measured in erg/esu. This unit also has a name of its own,
the statvolt (“stat” comes from “electrostatic”). As an exercise, you can
use the 1 C≈ 3 · 109 esu relation from Section 1.4 to show that one volt
is equivalent to approximately 1/300 statvolt. These two relations are
accurate to better than 0.1 percent, thanks to the accident that c is that
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close to 3 · 108 m/s. Appendix C derives the conversion factors between
all of the corresponding units in the SI and Gaussian systems. Further
discussion of the exact relations between SI and Gaussian electrical units
is given in Appendix E, which takes into account the definition of the
meter in terms of the speed of light.

Suppose we hold P1 fixed at some reference position. Then φ21
becomes a function of P2 only, that is, a function of the spatial coord-
inates x, y, z. We can write it simply φ(x, y, z), without the subscript,
if we remember that its definition still involves agreement on a refer-
ence point P1. We can say that φ is the potential associated with the
vector field E. It is a scalar function of position, or a scalar field (they
mean the same thing). Its value at a point is simply a number (in units of
work per unit charge) and has no direction associated with it. Once the
vector field E is given, the potential function φ is determined, except
for an arbitrary additive constant allowed by the arbitrariness in our
choice of P1.

Example Find the potential associated with the electric field described in
Fig. 2.3, the components of which are Ex = Ky, Ey = Kx, Ez = 0, with K a
constant. This is a possible electrostatic field; we will see why in Section 2.17.
Some field lines are shown.

1

−1 1

Ex = Ky

Ey = Kx

2

2

y

xA B

C

Figure 2.3.
A particular path, ABC, in the electric field
Ex = Ky, Ey = Kx. Some field lines are shown.

Solution Since Ez = 0, the potential will be independent of z and we need
consider only the xy plane. Let x1, y1 be the coordinates of P1, and x2, y2 the
coordinates of P2. It is convenient to locate P1 at the origin: x1 = 0, y1 = 0.
To evaluate − ∫

E · ds from this reference point to a general point (x2, y2) it is
easiest to use a path like the dashed path ABC in Fig. 2.3:

φ(x2, y2) = −
∫ (x2,y2)

(0,0)
E · ds = −

∫ (x2,0)

(0,0)
Ex dx −

∫ (x2,y2)

(x2,0)
Ey dy. (2.6)

The first of the two integrals on the right is zero because Ex is zero along the x
axis. The second integration is carried out at constant x, with Ey = Kx2:

−
∫ (x2,y2)

(x2,0)
Ey dy = −

∫ y2

0
Kx2 dy = −Kx2y2. (2.7)

There was nothing special about the point (x2, y2) so we can drop the subscripts:

φ(x, y) = −Kxy (2.8)

for any point (x, y) in this field, with zero potential at the origin. Any constant
could be added to this. That would only mean that the reference point to which
zero potential is assigned had been located somewhere else.

Example (Potential due to a uniform sphere) A sphere has radius R and
uniform volume charge density ρ. Use the results from the example in Section 1.11
to find the potential for all values of r, both inside and outside the sphere. Take
the reference point P1 to be infinitely far away.
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Solution From the example in Section 1.11, the magnitude of the (radial) elec-
tric field inside the sphere is E(r) = ρr/3ε0, and the magnitude outside is
E(r) = ρR3/3ε0r2. Equation (2.4) tells us that the potential equals the negative
of the line integral of the field, from P1 (which we are taking to be at infinity)
down to a given radius r. The potential outside the sphere is therefore

φout(r) = −
∫ r

∞
E(r′) dr′ = −

∫ r

∞
ρR3

3ε0r′2 dr′ = ρR3

3ε0r
. (2.9)

In terms of the total charge in the sphere, Q = (4πR3/3)ρ, this potential is sim-
ply φout(r) = Q/4πε0r. This is as expected, because we already knew that the
potential energy of a charge q due to the sphere is qQ/4πε0r. And the potential
φ equals the potential energy per unit charge.

To find the potential inside the sphere, we must break the integral into two
pieces:

φin(r) = −
∫ R

∞
E(r′) dr′ −

∫ r

R
E(r′) dr′ = −

∫ R

∞
ρR3

3ε0r′2 dr′ −
∫ r

R

ρr′
3ε0

dr′

= ρR3

3ε0R
− ρ

6ε0
(r2 − R2) = ρR2

2ε0
− ρr2

6ε0
. (2.10)
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Figure 2.4.
The potential due to a uniform sphere of charge.

Note that Eqs. (2.9) and (2.10) yield the same value of φ at the surface of the
sphere, namely φ(R) = ρR2/3ε0. So φ is continuous across the surface, as it
should be. (The field is everywhere finite, so the line integral over an infinitesimal
interval must yield an infinitesimal result.) The slope of φ is also continuous,
because E(r) (which is the negative derivative of φ, because φ is the negative
integral of E) is continuous. A plot of φ(r) is shown in Fig. 2.4.

The potential at the center of the sphere is φ(0) = ρR2/2ε0, which is 3/2
times the value at the surface. So if you bring a charge in from infinity, it takes
2/3 of your work to reach the surface, and then 1/3 to go the extra distance of R
to the center.

We must be careful not to confuse the potential φ associated with a
given field E with the potential energy of a system of charges. The poten-
tial energy of a system of charges is the total work required to assemble
it, starting with all the charges far apart. In Eq. (1.14), for example, we
expressed U, the potential energy of the charge system in Fig. 1.6. The
electric potential φ(x, y, z) associated with the field in Fig. 1.6 would
be the work per unit charge required to move a unit positive test charge
from some chosen reference point to the point (x, y, z) in the field of that
structure of nine charges.

2.3 Gradient of a scalar function
Given the electric field, we can find the electric potential function. But
we can also proceed in the other direction; from the potential we can
derive the field. It appears from Eq. (2.4) that the field is in some sense
the derivative of the potential function. To make this idea precise we
introduce the gradient of a scalar function of position. Let f (x, y, z) be
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some continuous, differentiable function of the coordinates. With its par-
tial derivatives ∂f /∂x, ∂f /∂y, and ∂f /∂z we can construct at every point
in space a vector, the vector whose x, y, z components are equal to the
respective partial derivatives.1 This vector we call the gradient of f , writ-

(x1, y1)

x

y

f(x, y)

(a)

(b)

x

y

(x1, y1)

Direction of
steepest slope

Figure 2.5.
The scalar function f (x, y) is represented by the
surface in (a). The arrows in (b) represent the
vector function, grad f .

ten “grad f ,” or ∇f :

∇f ≡ x̂
∂f
∂x

+ ŷ
∂f
∂y

+ ẑ
∂f
∂z

. (2.13)

∇f is a vector that tells how the function f varies in the neighborhood
of a point. Its x component is the partial derivative of f with respect to
x, a measure of the rate of change of f as we move in the x direction.
The direction of the vector ∇f at any point is the direction in which one
must move from that point to find the most rapid increase in the function
f . Suppose we were dealing with a function of two variables only, x and
y, so that the function could be represented by a surface in three dimen-
sions. Standing on that surface at some point, we see the surface rising
in some direction, sloping downward in the opposite direction. There is a
direction in which a short step will take us higher than a step of the same
length in any other direction. The gradient of the function is a vector in
that direction of steepest ascent, and its magnitude is the slope measured
in that direction.

Figure 2.5 may help you to visualize this. Suppose some particular
function of two coordinates x and y is represented by the surface f (x, y)
sketched in Fig. 2.5(a). At the location (x1, y1) the surface rises most
steeply in a direction that makes an angle of about 80◦ with the positive
x direction. The gradient of f (x, y), ∇f , is a vector function of x and y.
Its character is suggested in Fig. 2.5(b) by a number of vectors at various
points in the two-dimensional space, including the point (x1, y1). The
vector function ∇f defined in Eq. (2.13) is simply an extension of this
idea to three-dimensional space. (Be careful not to confuse Fig. 2.5(a)
with real three-dimensional xyz space; the third coordinate there is the
value of the function f (x, y).)

As one example of a function in three-dimensional space, suppose f
is a function of r only, where r is the distance from some fixed point O.
On a sphere of radius r0 centered about O, f = f (r0) is constant. On a
slightly larger sphere of radius r0 + dr it is also constant, with the value
f = f (r0 + dr). If we want to make the change from f (r0) to f (r0 + dr),

1 We remind the reader that a partial derivative with respect to x, of a function of x, y, z,
written simply ∂f /∂x, means the rate of change of the function with respect to x with
the other variables y and z held constant. More precisely,

∂f
∂x

= lim
�x→0

f (x + �x, y, z) − f (x, y, z)
�x

. (2.11)

As an example, if f = x2yz3,

∂f
∂x

= 2xyz3,
∂f
∂y

= x2z3,
∂f
∂z

= 3x2yz2. (2.12)
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the shortest step we can make is to go radially (as from A to B) rather
than from A to C, in Fig. 2.6. The “slope” of f is thus greatest in the

r 0 +
 dr

r0

O

A

B

C

Figure 2.6.
The shortest step for a given change in f is the
radial step AB, if f is a function of r only.

radial direction, so ∇f at any point is a radially pointing vector. In fact
∇f = r̂(df /dr) in this case, r̂ denoting, for any point, a unit vector in the
radial direction. See Section F.2 in Appendix F for further discussion of
the gradient.

2.4 Derivation of the field from the potential
It is now easy to see that the relation of the scalar function f to the vector
function ∇f is the same, except for a minus sign, as the relation of the
potential φ to the field E. Consider the value of φ at two nearby points,
(x, y, z) and (x+ dx, y+ dy, z+ dz). The change in φ, going from the first
point to the second, is, in first-order approximation,

dφ = ∂φ

∂x
dx + ∂φ

∂y
dy + ∂φ

∂z
dz. (2.14)

On the other hand, from the definition of φ in Eq. (2.4), the change can
also be expressed as

dφ = −E · ds. (2.15)

The infinitesimal vector displacement ds is just x̂ dx + ŷ dy + ẑ dz. Thus
if we identify E with −∇φ, where ∇φ is defined via Eq. (2.13), then
Eqs. (2.14) and (2.15) become identical. So the electric field is the nega-
tive of the gradient of the potential:

E = −∇φ (2.16)

The minus sign came in because the electric field points from a region of
greater potential toward a region of lesser potential, whereas the vector
∇φ is defined so that it points in the direction of increasing φ.

To show how this works, we go back to the example of the field
in Fig. 2.3. From the potential given by Eq. (2.8), φ = −Kxy, we can
recover the electric field we started with:

E = −∇(−Kxy) = −
(

x̂
∂

∂x
+ ŷ

∂

∂y

)
(−Kxy) = K(x̂y + ŷx). (2.17)

2.5 Potential of a charge distribution
We already know the potential that goes with a single point charge,
because we calculated the work required to bring one charge into the
neighborhood of another in Eq. (1.9). The potential at any point, in the
field of an isolated point charge q, is just q/4πε0r, where r is the distance
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from the point in question to the source q, and where we have assigned
zero potential to points infinitely far from the source.

Superposition must work for potentials as well as fields. If we have
several sources, the potential function is simply the sum of the poten-
tial functions that we would have for each of the sources present alone –
providing we make a consistent assignment of the zero of potential in
each case. If all the sources are contained in some finite region, it is
always possible, and usually the simplest choice, to put zero potential at

z
“Field” point

(x, y, z)

r

y
Charge

distribution

x�

x
x

(x�, y�, z�)

dx�, dy�, dz�

Figure 2.7.
Each element of the charge distribution
ρ(x′, y′, z′) contributes to the potential φ at the
point (x, y, z). The potential at this point is the
sum of all such contributions; see Eq. (2.18).

infinite distance. If we adopt this rule, the potential of any charge distri-
bution can be specified by the integral

φ(x, y, z) =
∫

all
sources

ρ(x′, y′, z′) dx′ dy′ dz′

4πε0r
, (2.18)

where r is the distance from the volume element dx′ dy′ dz′ to the point
(x, y, z) at which the potential is being evaluated (Fig. 2.7). That is, r =
[(x − x′)2 + (y − y′)2 + (z − z′)2]1/2. Notice the difference between
this and the integral giving the electric field of a charge distribution; see
Eq. (1.22). Here we have r in the denominator, not r2, and the integral
is a scalar not a vector. From the scalar potential function φ(x, y, z) we
can always find the electric field by taking the negative gradient of φ,
according to Eq. (2.16).

In the case of a discrete distribution of source charges, the above
integral is replaced by a sum over all the charges, indexed by i:

φ(x, y, z) =
∑

all sources

qi

4πε0r
, (2.19)

where r is the distance from the charge qi to the point (x, y, z).

Example (Potential of two point charges) Consider a very simple exam-
ple, the potential of the two point charges shown in Fig. 2.8. A positive charge of
12 μC is located 3 m away from a negative charge, −6 μC. (The “μ” prefix stands
for “micro,” or 10−6.) The potential at any point in space is the sum of the poten-
tials due to each charge alone. The potentials for some selected points in space
are given in the diagram. No vector addition is involved here, only the algebraic
addition of scalar quantities. For instance, at the point on the far right, which is
6 m from the positive charge and 5 m from the negative charge, the potential has
the value

1
4πε0

(
12 · 10−6 C

6 m
+ −6 · 10−6 C

5 m

)
= 0.8 · 10−6 C/m

4πε0

= 7.2 · 103 J/C = 7.2 · 103 V, (2.20)

where we have used 1/4πε0 ≈ 9 · 109 N m2/C2 (and also 1 N m= 1 J). The
potential approaches zero at infinite distance. It would take 7.2 · 103 J of work
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Figure 2.8.
The electric potential φ at various points in a
system of two point charges. φ goes to zero at
infinite distance and is given in units of volts, or
joules per coulomb.

to bring a unit positive charge in from infinity to a point where φ = 7.2 · 103 V.
Note that two of the points shown on the diagram have φ = 0. The net work
done in bringing in any charge to one of these points would be zero. You can see
that there must be an infinite number of such points, forming a surface in space
surrounding the negative charge. In fact, the locus of points with any particular
value of φ is a surface – an equipotential surface – which would show on our
two-dimensional diagram as a curve.

There is one restriction on the use of Eq. (2.18): it may not work
unless all sources are confined to some finite region of space. A simple
example of the difficulty that arises with charges distributed out to infi-
nite distance is found in the long charged wire whose field E we studied
in Section 1.12. If we attempt to carry out the integration over the charge
distribution indicated in Eq. (2.18), we find that the integral diverges –
we get an infinite result. No such difficulty arose in finding the electric
field of the infinitely long wire, because the contributions of elements of
the line charge to the field decrease so rapidly with distance. Evidently
we had better locate the zero of potential somewhere close to home, in
a system that has charges distributed out to infinity. Then it is simply
a matter of calculating the difference in potential φ21, between the gen-
eral point (x, y, z) and the selected reference point, using the fundamental
relation, Eq. (2.4).

Example (Potential of a long charged wire) To see how this goes in the
case of the infinitely long charged wire, let us arbitrarily locate the reference
point P1 at a distance r1 from the wire. Then to carry a charge from P1 to



68 The electric potential

any other point P2 at distance r2 requires the work per unit charge, using
Eq. (1.39):

φ21 = −
∫ P2

P1

E · ds = −
∫ r2

r1

(
λ

2πε0r

)
dr

= − λ

2πε0
ln r2 + λ

2πε0
ln r1. (2.21)

This shows that the electric potential for the charged wire can be taken as

φ = − λ

2πε0
ln r + constant. (2.22)

The constant, (λ/2πε0) ln r1 in this case, has no effect when we take −grad φ to
get back to the field E. In this case,

E = −∇φ = −r̂
dφ

dr
= λr̂

2πε0r
. (2.23)

2.6 Uniformly charged disk
Let us now study the electric potential and field around a uniformly
charged disk. This is a charge distribution like that discussed in
Section 1.13, except that it has a limited extent. The flat disk of radius
a in Fig. 2.9 carries a positive charge spread over its surface with the

y

a
ds

s

z

x

P2

P1

(0, y, 0)
s (C/m2)

Figure 2.9.
Finding the potential at a point P1 on the axis of
a uniformly charged disk.

constant density σ , in C/m2. (This is a single sheet of charge of infinites-
imal thickness, not two layers of charge, one on each side. That is, the
total charge in the system is πa2σ .) We shall often meet surface charge
distributions in the future, especially on metallic conductors. However,
the object just described is not a conductor; if it were, as we shall soon
see, the charge could not remain uniformly distributed but would redis-
tribute itself, crowding more toward the rim of the disk. What we have
is an insulating disk, like a sheet of plastic, upon which charge has been
“sprayed” so that every square meter of the disk has received, and holds
fixed, the same amount of charge.

Example (Potential on the axis) Let us find the potential due to our uni-
formly charged disk, at some point P1 on the axis of symmetry, which we have
made the y axis. All charge elements in a thin, ring-shaped segment of the disk
lie at the same distance from P1. If s denotes the radius of such an annular seg-
ment and ds is its width, its area is 2πs ds. The amount of charge it contains, dq,
is therefore dq = σ 2πs ds. Since all parts of this ring are the same distance away
from P1, namely, r =

√
y2 + s2, the contribution of the ring to the potential at

P1 is dq/4πε0r = σ s ds
/(

2ε0
√

y2 + s2
)
. To get the potential due to the whole

disk, we have to integrate over all such rings:

φ(0, y, 0) =
∫

dq
4πε0r

=
∫ a

0

σ s ds

2ε0
√

y2 + s2
= σ

2ε0

√
y2 + s2

∣∣∣∣a
0

. (2.24)
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Putting in the limits, we obtain

φ(0, y, 0) = σ

2ε0

(√
y2 + a2 − y

)
for y > 0. (2.25)

A minor point deserves a comment. The result we have written down in
Eq. (2.25) holds for all points on the positive y axis. It is obvious from the phys-
ical symmetry of the system (there is no difference between one face of the disk
and the other) that the potential must have the same value for negative and pos-
itive y, and this is reflected in Eq. (2.24), where only y2 appears. But in writing
Eq. (2.25) we made a choice of sign in taking the square root of y2, with the
consequence that it holds only for positive y. The correct expression for y < 0 is
obtained by the other choice of root and is given by

φ(0, y, 0) = σ

2ε0

(√
y2 + a2 + y

)
for y < 0. (2.26)

In view of this, we should not be surprised to find a kink in the plot of φ(0, y, 0)

at y = 0. Indeed, the function has an abrupt change of slope there, as we see in
Fig. 2.10, where we have plotted as a function of y the potential on the axis. The
potential at the center of the disk is

φ(0, 0, 0) = σa
2ε0

. (2.27)

This much work would be required to bring a unit positive charge in from infinity,
by any route, and leave it sitting at the center of the disk.

The behavior of φ(0, y, 0) for very large y is interesting. For y� a we can
approximate Eq. (2.25) as follows:

√
y2 + a2 − y = y

⎡
⎣(

1 + a2

y2

)1/2

− 1

⎤
⎦ = y

[
1 + 1

2

(
a2

y2

)
+ · · · − 1

]
≈ a2

2y
.

(2.28)
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Figure 2.10.
A graph of the potential on the axis. The dashed
curve is the potential of a point charge
q = πa2σ .
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Hence

φ(0, y, 0) ≈ a2σ

4ε0y
for y � a. (2.29)

Now πa2σ is the total charge q on the disk, and Eq. (2.29), which can be written
as πa2σ/4πε0y, is just the expression for the potential due to a point charge of
this magnitude. As we should expect, at a considerable distance from the disk
(relative to its diameter), it doesn’t matter much how the charge is shaped; only
the total charge matters, in first approximation. In Fig. 2.10 we have drawn, as a
dashed curve, the function a2σ/4ε0y. You can see that the axial potential func-
tion approaches its asymptotic form pretty quickly.

It is not quite so easy to derive the potential for general points away
from the axis of symmetry, because the definite integral isn’t so simple.
It proves to be something called an elliptic integral. These functions are
well known and tabulated, but there is no point in pursuing here mathe-
matical details peculiar to a special problem. However, one further cal-
culation, which is easy enough, may be instructive.

Example (Potential on the rim) We can find the potential at a point on the
very edge of the disk, such as P2 in Fig. 2.11. To calculate the potential at P2 we

dq

r

R

dr

s

a

q

P2

Figure 2.11.
Finding the potential at a point P2 on the rim of a
uniformly charged disk.

can consider first the thin wedge of length R and angular width dθ , as shown.
An element of the wedge, the black patch at distance r from P2, contains an
amount of charge dq = σ r dθ dr. Its contribution to the potential at P2 is there-
fore dq/4πε0r = σ dθ dr/4πε0. The contribution of the entire wedge is then

(σ dθ/4πε0)

∫ R

0
dr = (σR/4πε0) dθ . Now R is 2a cos θ , from the geometry of

the right triangle, and the whole disk is swept out as θ ranges from −π/2 to π/2.
Thus we find the potential at P2:

φ = σa
2πε0

∫ π/2

−π/2
cos θ dθ = σa

πε0
. (2.30)

Comparing this with the potential at the center of the disk, σa/2ε0, we see
that, as we should expect, the potential falls off from the center to the edge of the
disk. The electric field, therefore, must have an outward component in the plane
of the disk. That is why we remarked earlier that the charge, if free to move,
would redistribute itself toward the rim. To put it another way, our uniformly
charged disk is not a surface of constant potential, which any conducting surface
must be unless charge is moving.2

2 The fact that conducting surfaces have to be equipotentials will be discussed
thoroughly in Chapter 3.
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Let us now examine the electric field due to the disk. For y > 0, the
field on the symmetry axis can be computed directly from the potential
function given in Eq. (2.25):

Ey = −∂φ

∂y
= − d

dy
σ

2ε0

(√
y2 + a2 − y

)

= σ

2ε0

[
1 − y√

y2 + a2

]
y > 0. (2.31)

To be sure, it is not hard to compute Ey directly from the charge distri-
bution, for points on the axis. We can again slice the disk into concentric
rings, as we did prior to Eq. (2.24). But we must remember that E is
a vector and that only the y component survives in the present setup,
whereas we did not need to worry about components when calculating
the scalar function φ above.

As y approaches zero from the positive side, Ey approaches σ/2ε0.
On the negative y side of the disk, which we shall call the back, E points
in the other direction and its y component Ey is −σ/2ε0. This is the
same as the field of an infinite sheet of charge of density σ , derived in
Section 1.13. It ought to be, for at points close to the center of the disk,
the presence or absence of charge out beyond the rim can’t make much
difference. In other words, any sheet looks infinite if viewed from close
up. Indeed, Ey has the value σ/2ε0 not only at the center, but also all
over the disk.

For large y, we can find an approximate expression for Ey by using
a Taylor series approximation as we did in Eq. (2.28). You can show that
Ey approaches a2σ/4ε0y2, which can be written as πa2σ/4πε0y2. This
is correctly the field due to a point charge with magnitude πa2σ .

In Fig. 2.12 we show some field lines for this system and also, plotted
as dashed curves, the intersections on the yz plane of the surfaces of
constant potential. Near the center of the disk these are lens-like surfaces,
while at distances much greater than a they approach the spherical form
of equipotential surfaces around a point charge.

Figure 2.12 illustrates a general property of field lines and equipoten-
tial surfaces. A field line through any point and the equipotential surface
through that point are perpendicular to one another, just as, on a con-
tour map of hilly terrain, the slope is steepest at right angles to a contour
of constant elevation. This must be so, because if the field at any point
had a component parallel to the equipotential surface through that point,
it would require work to move a test charge along a constant-potential
surface.

The energy associated with this electric field could be expressed as
the integral over all space of (ε0/2)E2 dv. It is equal to the work done in
assembling this distribution, starting with infinitesimal charges far apart.
In this particular example, as Exercise 2.56 will demonstrate, that work
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Figure 2.12.
The electric field of the uniformly charged disk.
Solid curves are field lines. Dashed curves are
intersections, with the plane of the figure, of
surfaces of constant potential.
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is not hard to calculate directly if we know the potential at the rim of a
uniformly charged disk.

There is a general relation between the work U required to assem-
ble a charge distribution ρ(x, y, z) and the potential φ(x, y, z) of that
distribution:

U = 1
2

∫
ρφ dv (2.32)

Equation (1.15), which gives the energy of a system of discrete point
charges, could have been written in this way:

U = 1
2

N∑
j=1

qj
∑
k �=j

1
4πε0

qk

rjk
. (2.33)

The second sum is the potential at the location of the jth charge, due to all
the other charges. To adapt this to a continuous distribution we merely
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replace qj with ρ dv and the sum over j by an integral, thus obtaining
Eq. (2.32).

2.7 Dipoles
Consider a setup with two equal and opposite charges ±q located at
positions ±�/2 on the y axis, as shown in Fig. 2.13. This configura-

q

x

y

−q

/2

/2

Figure 2.13.
Two equal and opposite charges form a dipole.

tion is called a dipole. The purpose of this section is to introduce the
basics of dipoles. We save further discussion for Chapter 10, where we
define the word “dipole” more precisely, derive things in more general-
ity, and discuss examples of dipoles in actual matter. For now we just
concentrate on determining the electric field and potential of a dipole.
We have all of the necessary machinery at our disposal, so let’s see what
we can find.

We will restrict the treatment to points far away from the dipole
(that is, points with r � �). Although it is easy enough to write down an
exact expression for the potential φ (and hence the field E = −∇φ) at
any position, the result isn’t very enlightening. But when we work in the
approximation of large distances, we obtain a result that, although isn’t
exactly correct, is in fact quite enlightening. That’s how approximations
work – you trade a little bit of precision for a large amount of clarity.

q

r

q

−q

r1

r2

P

/2

/2

Figure 2.14.
Finding the potential φ at point P.

Our strategy will be to find the potential φ in polar (actually spheri-
cal) coordinates, and then take the gradient to find the electric field E. We
then determine the shape of the field-line and constant-potential curves.
To make things look a little cleaner in the calculations below, we write
1/4πε0 as k in some intermediate steps.

2.7.1 Calculation of φ and E
First note that, since the dipole setup is rotationally symmetric around
the line containing the two charges, it suffices to find the potential in an
arbitrary plane containing this line. We will use spherical coordinates,
which reduce to polar coordinates in a plane because the angle φ doesn’t
come into play (but note that θ is measured down from the vertical axis).
Consider a point P with coordinates (r, θ), as shown in Fig. 2.14. Let
r1 and r2 be the distances from P to the two charges. Then the exact

q

rq
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r2

r1

to P

/2

(     )  cos q/2

(     )  cos q/2

Figure 2.15.
Closeup view of Fig. 2.14.

expression for the potential at P is (with k ≡ 1/4πε0)

φP = kq
r1

− kq
r2

. (2.34)

If desired, the law of cosines can be used to write r1 and r2 in terms of r,
θ , and �.

Let us now derive an approximate form of this result, valid in the
r � � limit. One way to do this is to use the law-of-cosines expressions
for r1 and r2; this is the route we will take in Chapter 10. But for the
present purposes a simpler method suffices. In the r � � limit, a closeup
view of the dipole is shown in Fig. 2.15. The two lines from the charges
to P are essentially parallel, so we see from the figure that the lengths of


